

 [February 1 , 2017]

Neural Networks for Dummies

 © 2017 Rolf van Gelder, Eindhoven, NL

Neural Networks for Dummies v1 .1 - Rolf van Gelder

1

Contents
Introduction .. 2

How does it work? ... 4

Training a Network ... 4

Testing / Using a Network ... 4

The Test Case: Recognition of Handwritten Digits .. 5

Goal of the Network .. 5

Structure of the Network.. 6

Step one: testing the untrained Network ... 7

Step two: training the Network ... 7

Step three: experimenting with the Hidden Layers ... 7

Appendix I: Quick Reference ‘rvg_neural_net.exe’ Demo Network 9

Mouse .. 9

Keyboard... 9

Neural Networks for Dummies v1 .1 - Rolf van Gelder

2

Neural Networks for Dummies

Introduction

Neural networks are ‘self-learning’ computer programs and are normally created and configured to solve one
specific problem.

They are used in cases when it’s too hard to use a traditional computer program.

Like in the case I will explain later on: we want to build a network that will recognize handwritten digits.
If y ou want to recognize handwritten digits with a traditional program, it probably will need many thousands
lines of code. Our demo network will only use less than 1000 lines of code, and the best part: the same
program code can be used for solving different problems (with just some minor adjustments).

Nowaday s many neural networks are used in my different fields:
For instance Thunderbird (mail client) uses a neural network for identifying spam mails.
When the user marks an email as spam, it will train the network with that information.
(More about training later)

Other applications: license plate recognition, OCR, face recognition and so on.

In fact neural networks simulate a tiny part of a human brain.

Like the human brain, a neural network is built with so-called ‘neurons’

A neural network has several layers, built with neurons.

There is alway s one ‘input layer’, zero or more ‘hidden layers’ and one ‘output layer’.

Neural Networks for Dummies v1 .1 - Rolf van Gelder

3

Schematic of a neural network with one hidden layer:

All neutrons are identical (same code) with one exception: neurons in the input lay er don’t have inputs
themselves.

Depending on the problem it has to solve, the number of input neurons, the number of hidden layers and the
number of neurons of the hidden lay ers and the number of output neurons will be chosen.

Every neuron in a lay er is connected to all the neurons in the next layer (see above illustration).

In the above example there are already (20 * 30) + (30 * 10) = 900 connections (lines)!

In our test case (further on) we will use 196 input neurons, 100 hidden neurons and 10 output neurons.
That’s (196 * 100) + (100 * 10) = 20,600 connections!

During training and testing often the number of hidden layers and the number of hidden lay er neurons will be
changed to find the best configuration for performing that specific task.

Neural Networks for Dummies v1 .1 - Rolf van Gelder

4

How does it work?

Well, so far, no one really understands how it actually works… Especially the hidden layers are quite
‘my sterious’.

There are two things y ou can do with the network: ‘train the network’ and ‘test and/or use the
network’.

Training a Network

Without training a network, the output of the network will be completely random. The network has no idea
what to do with the input, so it just makes a guess.

Training is like teaching children: You tell them 2 + 2 = 4. And y ou tell them 1 + 6 = 7 and so on.
If y ou repeat that often enough, the child learns how to add two numbers.

Same for the network: during its training period you put inputs in and y ou tell it what the output should be.

Every neuron has two properties: ‘weight’ and ‘bias’ (sometimes also called ‘threshold’).

These two properties determine what the output value will be and what the neuron will pass on to the neurons
in the next lay er, based on its inputs.

In short: the weight defines how important the value is; the bias defines how high the weight should be before
passing it on to the next lay er. Together they calculate the output value.

When a training input is processed, it generates output values based on the current state of the neurons.
These output values in the output layer are compared to the right answer. The properties will be changed a
little bit, network will be tested again with the same input and the new output will be compared with the right
answer. If the new output is better than the previous one, the new properties will be saved.
So, the more often y ou train the network, the more reliable the output will become.

Testing / Using a Network

After every training session, the network will be tested: did the reliability improve?

When the reliability is good enough, the network is ready for its job!

Training and testing use different sets of data: ‘training-data’ and ‘testing-data’.
After training it, the network should be ‘clever’ enough to also solve inputs it never saw before.

These training- and testing datasets can be huge: millions of inputs. The basic rule is: the more the better!

Neural Networks for Dummies v1 .1 - Rolf van Gelder

5

The Test Case: Recognition of Handwritten Digits

You can download and play with the demo Network y ourself! Just download and run the
‘rvg_neural_net.exe’ app from http://cagewebdev.com/wp-
content/uploads/2016/10/rvg_neural_net20_win32.zip

Screen grab of the demo network in action (1 hidden lay er with 64 neurons):

Goal of the Network

The goal is that our network will recognize handwritten digits.

I warn y ou: the result won’t be 100% accurate!

http://cagewebdev.com/wp-content/uploads/2016/10/rvg_neural_net20_win32.zip
http://cagewebdev.com/wp-content/uploads/2016/10/rvg_neural_net20_win32.zip

Neural Networks for Dummies v1 .1 - Rolf van Gelder

6

People also make mistakes reading handwritten digits: for instance many people will say it’s a ‘one’ while in
fact it’s meant to be a ‘seven’ or the other way around. Depends on the handwriting style of the person who
wrote it.

So, our little network will also be fooled by that.

The training- and test-sets for our network are from the ‘MNIST’ database. MNIST, a foundation based in
New Y ork asked many people to write down digits (and also the same digits many times).
In total there are 60,000 training- and 10,000 handwritten testing-digits in our datasets.

Structure of the Network

Our network has 196 input neurons, a certain amount of hidden layers with a certain amount of neurons,
which we can adjust, and 10 output neurons.

Why 196 inputs? Because the images in the MNIST database are simplified to 14 x 14 (=196) pixels. So, there
should be an input for every pixel.

For instance (which apparently is a ‘zero’):

Like said: we can play around with the number of hidden layers and the number of neurons in the hidden
lay er(s).

The output layer, in our test case, has 10 neurons:

The darkness of the dots indicates what the network thinks the right answer is.
The darker the color, the more sure it is that it’s the right answer.

In the above example, apparently the network thinks it’s a ‘one’ and it’s not very sure about it (could be much
darker, up to pitch black).

Neural Networks for Dummies v1 .1 - Rolf van Gelder

7

Step one: testing the untrained Network

Just for fun: let’s test the untrained network.

Without any training the weights and biases of the neurons will be totally random.

So, we easily can predict the outcome of this experiment will be around 10% accuracy (=success).

If y ou guess a number between 0 and 9, in about 10% of the cases y ou will have guessed it right.

A testing session means: putting 1000 (=adjustable amount) images into the network and measure the number
of hits (correct answers). Based on the total number of hits, it calculates the percentage of accuracy of the
network (success %).

The images, by the way, are selected at random from the datasets.

After downloading and starting the demo app (rvg_neural_net.exe), you click the right m ouse button to
start a testing session. It will test 1000 test images per session.

As y ou will see, the success percentage is somewhere around the 10% (since the network is not trained y et, as
explained above).

Step two: training the Network

Next: let’s see if training the network helps…

During a training session we’ll put in a batch of 1000 (=adjustable amount) random images from the training-
set.

For every image, the network will compare the actual output from the network with the wanted output and
adjust the weights and biases of the neurons accordingly.
Teaching it: “Hey Network, this should be a ‘two’ and not a ‘five’!”

After two training sessions (2000 images) it turns out that the accuracy already has gone up to around 65%.

So, our network is actually learning!

We can train it again and again and see what happens to the accuracy.

Y ou can train the demo network (rvg_neural_net.exe) by clicking the left mouse button somewhere on
the canvas.
After one or more training sessions, just run the test session again (click the right m ouse button) and watch
the success percentage go up.

Step three: experimenting with the Hidden Layers

Now we can experiment with the number of hidden layers.
And the number of neurons per hidden layer.
It’s a purely empirical process: it’s impossible to predict if the outcome will be better or worse.

Neural Networks for Dummies v1 .1 - Rolf van Gelder

8

Sometimes 1 hidden layer works much better than 5 hidden layers or the other way around.

There are no formulas to calculate the most efficient number of hidden lay ers and neurons for solving the
problem. It’s just a matter of experimenting. That’s part of the fact that no one really knows how it works.

To increase the number of hidden layers in the demo network (rvg_neural_net.exe) press the ‘L’-key .
To decrease the number of hidden layers in the demo network (rvg_neural_net.exe) press the ‘l’-key .

To increase the number of neurons in the hidden layer(s) in the demo network (rvg_neural_net.exe) press
the ‘N’-key .
To increase the number of neurons in the hidden layer(s) in the demo network (rvg_neural_net.exe) press
the ‘n’-key .

Neural Networks for Dummies v1 .1 - Rolf van Gelder

9

Appendix I: Quick Reference ‘rvg_neural_net.exe’ Demo Network

How to interact with the demo app (rvg_neural_net.exe)?

Mouse

• Left-click: start a training session (= feed the network 1000 training images)
• Right-click: start a testing session (= feed the network 1000 testing images)

Keyboard

• Spacebar: test the next image (one by one)

• ‘b’-key : decrease training batch size
• ‘B’-key : increase training batch size

• ‘f’ or ‘F’-key : toggle between slow (non-animated) and fast (animated) training

• ‘l’-key : decrease the number of hidden layers (min = 0)
• ‘L’-key : increase the number of hidden layers (max = 5)

• ‘n’-key : decrease the number of neurons in the hidden layers (min = 25)
• ‘N’-key : increase the number of neurons in the hidden layers (max = 144)

• ‘-‘-key : decrease the fram erate (speed) for auto testing
• ‘+’-key : increase the fram erate (speed) for auto testing

	Introduction
	How does it work?
	Training a Network
	Testing / Using a Network

	The Test Case: Recognition of Handwritten Digits
	Goal of the Network
	Structure of the Network
	Step one: testing the untrained Network
	Step two: training the Network
	Step three: experimenting with the Hidden Layers

	Appendix I: Quick Reference ‘rvg_neural_net.exe’ Demo Network
	Mouse
	Keyboard

